Fast multipole boundary element method for the Laplace equation in a locally perturbed half-plane with a Robin boundary condition

Carlos Pérez-Arancibia a,*, Pedro Ramaciotti b, Ricardo Hein a, Mario Durán b

a Ingenieros Matemáticos Consultores Asociados S.A. (INGMAT), Santiago, Chile
b Centro de Minería, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile

\textbf{Article history:}
Received 13 December 2011
Received in revised form 22 March 2012
Accepted 16 April 2012
Available online 25 April 2012

\textbf{Keywords:}
Laplace equation
Robin boundary condition
Fast multipole algorithm
Boundary element method
Exponential integral function

A fast multipole boundary element method (FM-BEM) for solving large-scale potential problems ruled by the Laplace equation in a locally-perturbed 2-D half-plane with a Robin boundary condition is developed in this paper. These problems arise in a wide gamut of applications, being the most relevant one the scattering of water-waves by floating and submerged bodies in water of infinite depth. The method is based on a multipole expansion of an explicit representation of the associated Green's function, which depends on a combination of complex-valued exponential integrals and elementary functions. The resulting method exhibits a computational performance and memory requirements similar to the classic FM-BEM for full-plane potential problems. Numerical examples demonstrate the accuracy and efficiency of the method.

\textcopyright{} 2012 Elsevier B.V. All rights reserved.

1. Introduction

Robin boundary condition for the Laplace equation is a broadly used mathematical model that arises in a wide gamut of engineering problems. One of the most important applications is the theory of water-waves, in which the Robin boundary condition (with a real parameter) gives a linearized description of the propagation of time-harmonic gravity waves on the surface of an incompressible inviscid irrotational fluid \cite{1,2}. Particularly when considering a compactly perturbed half-plane, this model predicts the scattering of small amplitude water-waves due to the presence of floating or submerged bodies. Otherwise, complex Robin parameters play a role in modeling water-wave phenomena in domains involving porous structures like permeable breakwaters \cite{3}. Other applications include harmonic potentials in domains containing rough surfaces \cite{4}, steady-state heat conduction using linear convection boundary conditions \cite{5,6}, and approximation of low-frequency sound and electromagnetic wave propagation above the ground \cite{7,8}. More recently this model has been used to simulate the fluid flow induced by nonuniform alternating-current electric fields in electrolytes on microelectrodes \cite{9}.

An appropriate approach to numerically solve the Laplace equation above a Robin half-plane is the boundary element method (BEM) \cite{10,11}, since it provides a natural framework to take the unboundedness of the computational domain and radiation/decaying conditions at infinity into account. The essence of the BEM is the knowledge of the Green's function of the problem. However, unlike half-plane problems with Dirichlet or Neumann boundary conditions where the Green's function can be directly obtained by applying the method of images, the computation of Green's function for the Robin problem usually entails either the application of the complex image method or Fourier transform techniques that usually lead to complicated non-explicit representations unsuitable for direct numerical evaluations. Expressions for the Green's function of the Laplace equation in two-and three-dimensional Robin half-spaces were first derived by John \cite{12,13}. Since then, many other equivalent expressions have been obtained \cite{1,2,14}, based on integrals representations and series expansions. To the authors' knowledge, the first explicit or closed-form expression for the Green's function in the two-dimensional case, was recently derived by Hein et al. \cite{15}, by means of a combination of elementary functions and complex-valued exponential integrals. This relatively simple representation can be accurately evaluated numerically in the complex-plane, so it is easy to incorporate it into a BEM code.

An important disadvantage of the conventional BEM is that the discretized boundary integral equation yields a dense system of equations. Therefore, when this method is applied to problems defined in domains with large or complex boundaries where many elements are required, the linear system readily becomes intractable or too expensive to be solved by standard methods. Due to this
2. Robin half-plane problem for the Laplace equation

2.1. Problem setup

Let \(\Omega_+ \subset \mathbb{R}^2 \) be a locally perturbed half-plane (see Fig. 1) with boundary \(\Gamma \) admitting the splitting \(\Gamma = \Gamma_p \cup \Gamma_\infty \), where \(\Gamma_p \cap \Gamma_\infty = \emptyset \), \(\Gamma_p \subset \mathbb{R}^2 \) is bounded, and \(\Gamma_\infty \subset \{(x_1, x_2) \in \mathbb{R}^2 : x_2 = 0\} \). Now, we consider the differential problem

\[
\begin{align*}
\Delta u &= 0 & & \text{in } \Omega_+, \\
\frac{\partial u}{\partial n} - \nu u &= f & & \text{on } \Gamma, \\
\text{+radiation condition as } |y| \to +\infty,
\end{align*}
\]

where the function \(\nu : \Gamma \to \mathbb{C} \), \(\nu \in L^\infty(\Gamma) \), is referred to as the Robin parameter and is such that

\[
\nu_{\nu}(x) = \nu + \nu_{\nu}(x), \quad (2)
\]

with \(\nu \in \mathbb{C} \) being a constant and \(\nu : \Gamma \to \mathbb{C} \), \(\text{supp}(\nu) \subset \Gamma_p \). Due to physical considerations concerning dissipation (cf. [3]), we have that \(\nu \) lies in the first quadrant of the complex plane. More precisely, \(0 \leq \text{arg } \nu < \pi/2 \). We also assume that the source term \(f : \Gamma \to \mathbb{C} \), \(f \in H^{1/2}\overline{\Gamma} \), is such that \(\text{supp}(f) \subset \Gamma_p \), which is a standard assumption in the formulation of scattering problems like this, where surface waves are allowed to be diffracted by the perturbation \(\Gamma_p \).

In order to perform a boundary integral equation leading to the solution of Eq. (1), we resort to the Green’s function given by the solution of the boundary-value problem (cf. [15])

\[
\begin{align*}
\Delta G(x, y) &= \delta_\nu(y), & & \text{in } \mathbb{R}^2_+, \\
\frac{\partial G}{\partial y_2}(x, y) + i \nu G(x, y) &= 0, & & \text{on } y_2 = 0, \\
\text{+radiation condition as } |y| \to +\infty,
\end{align*}
\]

which has to be understood in the sense of distributions on account of the fact that \(\delta_\nu \in \mathcal{D}'(\mathbb{R}^2_+) \) is Dirac’s delta distribution supported at \(x \in \mathbb{R}^2_+ \). The suitable radiation condition for Eq. (3), which also is the radiation condition for Eq. (1), is given by

\[
\begin{align*}
|G| &\leq C |y| \quad \text{and} \quad \left| \frac{\partial G}{\partial y} \right| \leq C \frac{|y|}{|y|^2} & & \text{if } y_2 > \frac{1}{\nu} \ln(1 + 1/|y|), \\
|G| &\leq C |y| \quad \text{and} \quad \left| \frac{\partial G}{\partial y} - i \nu G \right| \leq C \frac{|y|}{|y|^2} & & \text{if } y_2 > \frac{1}{\nu} \ln(1 + 1/|y|).
\end{align*}
\]

It qualitatively corresponds to surface waves propagating along the flat boundary \(\Gamma_\infty \), going away from the fixed point \(x \in \mathbb{R}^2_+ \). According to [15], problem Eq. (3) admits a unique explicit solution

\[
\begin{align*}
G(x, y) &= \frac{1}{2\pi i} \ln |x - y| - \frac{1}{2\pi i} \ln |y - x| - ie^{i(y_2-x_2)} \cos(y_1 - x_1) \\
&+ \frac{e^{-i(y_2-x_2)}}{2\pi} \left\{ e^{i(y_1-x_1)} \text{Ei}(y_2 + x_2 - i(y_1 - x_1)) - e^{-i(y_1-x_1)} \text{Ei}(y_2 + x_2 + i(y_1 - x_1)) \right\}, \\
\end{align*}
\]

where \(x = (x_1, -x_2) \) is the image point of \(x \) and where \(\text{Ei} \) denotes the exponential integral function (cf. [45]) defined as the Cauchy principal-value integral

\[
\text{Ei}(z) = -\int_{\infty}^{z} \frac{e^{t}}{t} \, dt. \quad \text{|arg } z | < \pi.
\]

Likewise, the gradient of Eq. (5) can be explicitly computed and is given by

\[
\begin{align*}
\nabla_y G(x, y) &= \frac{y - x}{2\pi |y - x|^2} \left\{ \frac{y - x}{2\pi |y - x|^2} - i e^{i(y_2-x_2)} \left[\sin(y_1 - x_1) \right] \cos(y_1 - x_1) \right\} \\
&- \frac{v}{2\pi} e^{i(y_2-x_2)} \left\{ [-1, 1] e^{i(y_1-x_1)} \text{Ei}(y_2 + x_2 - i(y_1 - x_1)) + [1, 1] e^{-i(y_1-x_1)} \text{Ei}(y_2 + x_2 + i(y_1 - x_1)) \right\}.
\end{align*}
\]
Thanks to the Green’s function Eq. (5), it is possible to derive an integral representation and a boundary integral equation for the solution of Eq. (1). They respectively read as follows,

\[u(x) = \int_{\Gamma_p} K(x, y) u(y) \, dy \, + \, \int_{\Gamma_p} G(x, y) f(y) \, dy, \quad x \in \Omega_e \cup \Gamma_\infty, \] (8)

\[\frac{1}{2} \int_{\Gamma_p} K(x, y) u(y) \, dy \, + \, \int_{\Gamma_p} G(x, y) f(y) \, dy, \quad x \in \Gamma_p, \] (9)

where we have introduced an additional integral kernel defined by

\[K(x, y) = \frac{\partial G(x, y)}{\partial n_y} - v_i(y) G(x, y), \quad x \in \Omega_e \cup \Gamma, \quad y \in \Gamma. \] (10)

Results on the existence and uniqueness of solutions (for a restricted set of Robin parameters) for the boundary integral Eq. (9) can be found in [46], whereas explicit examples of non-uniqueness can be found in [47] and references therein.

It has to be pointed out that the restriction on the domain \(\Omega_e \) to lie on the upper half-plane \(\mathbb{H}^+ \) stems from the fact that formulae Eqs. (8) and (9) are only valid in this case. If a perturbation towards the lower half-plane is desired for \(\Omega_e \), then the derivation of an appropriate integral representation and equation requires the consideration of the additional singularities of the Green’s function in the complementary half-space, i.e., the logarithmic singularity at the point \(x \) and the jump of the \(y_i \)-derivative across the half-line \(\Gamma = \{ y_1 = x_1, y_2 < -x_2 \} \) due to the effect of the analytic branch cut of the complex-valued exponential integral. Both singularities yield Dirac mass distributions when the Laplacian of the Green’s function is computed (cf. [15,46]). Despite the fact that this restriction may appear unphysical and stringent for some applications, it is fulfilled by a wide variety of problems involving linearized water-waves, where the perturbation models submerged and floating objects, and where the water body remains always contained inside the considered half-plane.

2.2. Discretization of the boundary integral equation

In what follows we are interested in numerically solving Eq. (9) by combining the BEM and the FMM. For the sake of efficiency and simplicity, we discretize Eq. (9) through a collocation method by combining the BEM and the FMM. For the sake of efficiency and simplicity, we discretize Eq. (9) through a collocation method.

Let us assume that \(\Gamma_p = \bigcup_{i=1}^{N_\Gamma} \Gamma_{\ell_i} \), where \(\Gamma_{\ell_i} \cap \Gamma_{\ell_j} = \emptyset \) if \(\ell_1 \neq \ell_2 \), and that each \(\Gamma_{\ell_i} \) is a straight line segment in the plane. We look then for an approximation of the form

\[u(y) \approx u_h(x) = \sum_{j=1}^{N} u_j \varphi_j(y), \] (11)

where the (standard) basis functions \(\varphi_j(y) \), \(j = 1, \ldots, N \), are defined on \(\Gamma_p \) and satisfy \(\varphi_j(x_i) = \delta_{ij} \) with \(x_i \), \(i = 1, \ldots, N \), being the collocation points. Here, the approximate solution \(u_h \) depends on the discretization refinement \(h \), defined as \(h = \max_{\ell \in [1, N]} |\Gamma_{\ell}| \).

In order to obtain a system of equations for the coefficients \(u_j \) in Eq. (11) we substitute the right-hand side of Eq. (11) into Eq. (9) and evaluate the terms in this equation at the collocation points. It yields the system of equations

\[\left(I - \frac{K}{2} \right) u = Gf, \] (12)

where \(f_i = f(x_i) \), \(I \in \mathbb{C}^{N \times N} \) is the identity matrix, and

\[k_{ij} = \frac{1}{2} \int_{\Gamma_{\ell_i}} K(x, y) \varphi_j(y) \, dy, \quad i, j = 1, \ldots, N, \] (13)

\[g_{ij} = \frac{1}{2} \int_{\Gamma_{\ell_i}} G(x, y) \varphi_j(y) \, dy, \quad i, j = 1, \ldots, N. \] (14)

As should be expected in a collocation BEM \(K \in \mathbb{C}^{N \times N} \) is a dense matrix. This is because the computational complexity to compute \(K \) is about ten times the one required to compute the discretization matrix (with the same number of degrees of freedom) associated to the potential problem of a bounded obstacle in the whole plane, such as the one studied in [21].

The linear system Eq. (12) can be solved by direct methods like the LU decomposition and the Gauss elimination algorithm. However, those methods are considered inefficient for problems having a large number of degrees of freedom \(N \) due to the fact that \(O(N^3) \) operations are required. On the other hand, iterative methods like, e.g., the conjugate gradient or GMRES algorithm, perform considerably better than direct solvers when \(I/2 - K \) is well conditioned. Nevertheless, those methods entail evaluating several times the multiplication of \(K \) by a complex vector, which is also considered inefficient for large \(N \) because it demands \(O(N^2) \) operations per iteration.

The key idea of the FM-BEM is to speed up the matrix–vector multiplications required by iterative linear system solvers to converge within a prescribed tolerance, reducing its complexity to only \(O(N) \) operations per iteration. To do so, matrix \(K \) must be interpreted as the sum of two matrices, namely \(K^{\text{off}} \) and \(K^{\text{f}} \), where \(K^{\text{off}} \) is due to the contribution of sources located in the near field, and \(K^{\text{f}} \) is due to the contributions of sources located in the far field. The exact meaning of the near and far field will be established later on this paper.

The entries of \(K^{\text{off}} \) are explicitly computed as in the conventional BEM, i.e., the singularities of \(K \) in the integral Eq. (12) are solved analytically while the remaining terms are computed employing an accurate quadrature rule (see [46]). If enough memory is available, \(K^{\text{f}} \) is stored, so it is not necessary to recompute it in subsequent iterations. By contrast, the entries of \(K^{\text{f}} \) are never explicitly computed. Instead, in each solver iteration the result of the matrix multiplication between \(K^{\text{f}} \) and a vector \(v \) is efficiently approximated by using a multipole expansion for \(\int_{\Gamma_{\ell_i}} K(x, y) \varphi_j(y) \, v \, dy \). The next sections address the issue of describing how this multipole expansion is applied to accelerate the solution of the problem, reducing at the same time the memory requirements.

3. Series expansions

In this section we perform a series representation of the Green’s function and its normal derivative in order to derive the multipole and local expansions.

3.1. Complex variable notation

As is conventional in two-dimensional potential problems, we resort to the use of complex analysis tools. Thus, let us consider the bijective map \(\mathbb{R}^2 \times \mathbb{R}^2 \ni (x, y) \to (w, z) \in C_+ \times C_+ \), defined by \(w(x) = x_1 + ix_2 \) and \(z(y) = y_1 + iy_2 \), where \(C_+ = \{ z \in \mathbb{C} \ : \ Im z > 0 \} \). This map allows to express Eq. (5) as

\[G(w, z) = \frac{1}{2\pi i} \mathcal{N} \{ ln(w - z) - ln(w - z) \} \]

\[\frac{1}{z} \left[e^{-i\frac{1}{2} \mathcal{P}(z)} \right] - \frac{1}{2} \left[e^{-i\frac{1}{2} \mathcal{P}(w - z)} + e^{-i\frac{1}{2} \mathcal{P}(w - z)} \right] + \frac{e^{-i\mathcal{P}(w - z)}}{2\pi} - Ei(i\mathcal{P}(w - z)) \]

\[+ \frac{e^{-i\mathcal{P}(z - w)}}{2\pi} - Ei(i\mathcal{P}(z - w)), \] (15)
where $G(x, y) = G(w(x), z(y))$. Here, the complex logarithm and the exponential integral function have to be understood in the sense of the principal value, so their domain of definition is restricted to $0 < |\arg z| < \pi$. Likewise, we get that the normal derivative of the Green’s function can be expressed as

\[F(w, z) = \frac{1}{2\pi} \arg \left\{ \frac{\eta}{w} \right\} + \frac{\eta}{z - \overline{w}} \left\{ \eta e^{-i\pi(w - z)} - \eta e^{i\pi(w - z)} \right\} + \frac{\eta}{z} \left\{ \eta e^{-i\pi(w - z)} - \eta e^{i\pi(w - z)} \right\} \]

\[\frac{\partial G(x, y)}{\partial n_y} = F(w, z) \] and $\eta(z) = \eta_1(y(z)) + i\eta_2(y(z))$ with $n_y = [\eta_1, \eta_2]^T$ being the unit normal vector pointing outwards from the region Ω_r. Identity Eq. (16) follows directly by taking the dot product between n_y and the Green’s function’s gradient Eq. (7) and by transforming the resulting expression into complex variable notation.

3.2. Series expansion of the logarithmic terms

We start by expanding the logarithmic terms of the Green’s functions. Thus, let z and $w \in C_\mathfrak{e}$ such that $|z| < |w|$. Then, resorting to some well-known results for the Laplace equation in the plane (cf. [17, 18, 49]), we get that all terms in Eq. (15) involving logarithms can be expanded as

\[\ln(w - z) = \sum_{n=0}^{\infty} S_n^{(1)}(w)R_n^{(1)}(z), \quad |z| < |w|, \]

where the functions used to perform the series Eq. (17) are defined as

\[R_n^{(1)}(z) = \frac{z^n}{n!}, \quad n \geq 0, \quad (18a) \]

\[S_n^{(1)}(z) = \frac{\Gamma(n - 1)}{z^n}, \quad n \geq 1; \quad \text{and} \quad S_0^{(1)}(z) = -\ln(z). \]

An addition formula for the functions $R_n^{(1)}$ can be readily obtained from the binomial theorem, and its given by

\[R_n^{(1)}(z_1 + z_2) = \sum_{m=0}^{n} R_m^{(1)}(z_1)R_{n-m}^{(1)}(z_2). \]

Likewise, an analogous result for the functions $S_n^{(1)}$ is

\[S_n^{(1)}(z_1 + z_2) = \sum_{m=0}^{n} S_m^{(1)}(z_1)S_{n-m}^{(1)}(-z_2), \quad |z_2| < |z_1|, \]

which can be worked out by computing the Laurent series expansion of $S_n^{(1)}(z_1 + z_2)$ about z_2 when $|z_2| < |z_1|$.

3.3. Series expansion of the exponential integral function

Now we deal with the series expansion of the Green’s function terms depending on the exponential integral function, which is based on the next two propositions.

Proposition 3.1 (see [50]). Let $z \in C \setminus \{0\}$ such that $|\arg z| < \pi$. Thus, the derivatives of the exponential integral function at z are given by

\[\frac{d^n}{dz^n} \left\{ e^{i\alpha(z - \overline{w})} \right\} = d_n(\alpha) e^{i\alpha(z - \overline{w})}, \quad n \geq 0, \]

where the functions d_n are defined as

\[d_n(\alpha) = \frac{d^n}{dz^n} \left\{ e^{i\alpha(z - \overline{w})} \right\}, \quad n \geq 0 \]

and can be computed through the recurrence relation

\[d_n(z) = \frac{n}{z} d_{n-1}(z) - \frac{e^z}{z}. \]

Furthermore, the functions d_n can be explicitly expressed as

\[d_n(z) = (-1)^n \frac{n!}{z^n} e^{z} \sum_{k=0}^{n} \frac{(-1)^k}{k!}, \quad n \geq 0. \]

The next proposition establishes a series representation of the exponential integral function.

Proposition 3.2. Let $v \in C$ such that $0 < |v| \leq \pi/2$. Then, the Taylor series expansion

\[E_1(iw; z) = E_1(iw\mathfrak{e}) + \sum_{n=1}^{\infty} d_{n-1}(iw\mathfrak{e}) \frac{(-iw\mathfrak{e})^n}{n!}, \quad \mathfrak{e} \neq 0. \]

holds true for all complex numbers z and w belonging to $C_\mathfrak{e}$ such that $|z| < |w|$.

Proof. First we observe that the exponential integral is a single-valued function in the region $|\arg z| < \pi$, so the function $E_1(iw\mathfrak{e})$ is single-valued for all $w \in C_\mathfrak{e}$ due to the fact that $-\pi/2 < \arg(iw\mathfrak{e}) < \pi$ when \mathfrak{e} lies in the first quadrant. Thus, as the exponential integral is also analytic in that region, we are allowed to perform a Taylor series about $iw\mathfrak{e}$ to get Eq. (24), which is valid for all $z \in C_\mathfrak{e}$, such that $|zw| < \rho$, with ρ being the radius of convergence of the series. Now, as it is well known (cf. [51]), ρ can be determined by

\[\rho = \lim_{n \to \infty} \frac{d_{n-1}(iw\mathfrak{e})}{(n + 1)!} = |w\mathfrak{e}| \lim_{n \to \infty} \left[\frac{n!}{(n + 1)!} \right] = \left| \frac{n!}{(n + 1)!} \right|, \]

where the last term follows from Eq. (23). Then, taking into account that

\[\lim_{n \to \infty} \frac{n!}{k!} = \lim_{n \to \infty} \frac{(iw\mathfrak{e})^k}{k!} = e^{i\alpha}, \]

we get that $\rho = |w\mathfrak{e}|$. Using this fact it can be concluded that the series Eq. (24) is valid for all z and $w \in C_\mathfrak{e}$, such that $|z| < |w|$. □

In order to write in a convenient form the series expansion of the Green’s function terms depending on the exponential integral, we define the sets of functions

\[R_n^{(2)}(z) = \frac{e^{i\alpha(z - \overline{w})}}{n!}, \quad n \geq 0, \]

\[S_n^{(2)}(z) = \left\{ \begin{array}{ll}
\frac{e^{-i\alpha(z - \overline{w})}}{n!} & \text{if } n = 0, \\
\frac{e^{-i\alpha(z - \overline{w})}d_{n-1}(iz)}{i(iz)!} & \text{if } n \geq 1,
\end{array} \right. \]

which can be straightforwardly deduced from Eq. (19). Let us observe that henceforth the functions $R_n^{(2)}$ and $S_n^{(2)}$ depend implicitly on the impedance parameter \mathfrak{e}. Using these functions we achieve that

\[e^{\pi i/w}(i\mathfrak{e})(w - z) = \sum_{n=0}^{\infty} S_n^{(2)}(w)R_n^{(2)}(z), \quad |z| < |w|, \]

and

\[e^{\pi i/w}(i\mathfrak{e})(\mathfrak{e} - w) = \sum_{n=0}^{\infty} S_n^{(2)}(-w)R_n^{(2)}(-z), \quad |z| < |w|. \]

It can be straightforwardly deduced from Eq. (19) that the functions $R_n^{(2)}$ satisfy the addition formula

\[R_n^{(2)}(z_1 + z_2) = \sum_{m=0}^{n} R_{m}^{(2)}(z_1)R_{n-m}^{(2)}(z_2), \quad n \geq 0. \]
when $n \geq 1$, we get from the Taylor theorem that they satisfy the addition formula

$$S^{(1)}_{n}(z_{1} + z_{2}) = \sum_{m=0}^{\infty} S^{(1)}_{n+m}(z_{2})R^{(1)}_{m}(-z_{1}), \quad n \geq 1, \quad |z_{1}| < |z_{2}|. \quad (29)$$

Formula Eq. (29) can be proved by resorting to the same arguments used in the proof of Proposition 3.2.

3.4. Expansion of the Green's function

Now we are in position to perform the series representation of the Green's function Eq. (15) and its normal derivative Eq. (16). Let z and $w \in \mathbb{C}$, such that $|z| < |w|$. Then, by directly using Eqs. (17) and (27a) we get that the Green's function admits the series expansion

$$G(w, z) = \frac{1}{2\pi i} \sum_{n=0}^{\infty} \mathfrak{Re}\left\{ \left[S^{(1)}(w) - S^{(1)}(w) \right] R^{(1)}_{n}(z) \right\}$$

$$+ \frac{1}{2\pi i} \sum_{n=0}^{\infty} \left\{ S^{(1)}(w) R^{(1)}_{n}(z) + S^{(1)}(-w) R^{(1)}_{n}(-z) \right\}$$

$$- \frac{1}{i} \left\{ e^{i\pi R^{(1)}_{n}(z)} + e^{i\pi R^{(1)}_{n}(-z)} \right\}. \quad (30)$$

To perform an expansion of the normal derivative we take the derivative of Eq. (30). In order to do so we first note that the Green's function can be expressed as $G(w, z) = f_{1}(z) + f_{2}(z)$ where f_{1} and f_{2} are analytic functions of $z \in \mathbb{C}$, and $z \in \mathbb{C}$. Consequently, it can be deduced that its gradient can be computed as $\nabla f_{1}(z) + \nabla f_{2}(z)$ and, consequently, its normal derivative is given by $\nabla f(w, z) = \nabla f_{1}(z) + \nabla f_{2}(z)$. Recognizing the function f_{1} and f_{2} in Eq. (30) and applying the previous formula, we achieve that

$$F(w, z) = \frac{1}{2\pi i} \sum_{n=0}^{\infty} \mathfrak{Re}\left\{ \left[S^{(1)}(w) - S^{(1)}(w) \right] R^{(1)}_{n}(z) \right\}$$

$$+ \frac{1}{2\pi i} \sum_{n=0}^{\infty} \left\{ S^{(1)}(w) R^{(1)}_{n}(z) - S^{(1)}(-w) R^{(1)}_{n}(-z) \right\}$$

$$- \frac{1}{i} \left\{ e^{-i\pi R^{(1)}_{n}(z)} - e^{i\pi R^{(1)}_{n}(-z)} \right\}. \quad (31)$$

Here, the derivative of the functions $R^{(1)}_{n}$, $j = 1, 2$, can be computed through the formulae

$$R^{(1)}_{n}(z) = 0, \quad R^{(2)}_{n}(z) = iR^{(2)}_{n}(z), \quad R^{(2)}_{n}(z) = R^{(2)}_{n}(z),$$

$$R^{(2)}_{n}(z) = iR^{(2)}_{n}(z) + R^{(2)}_{n-2}(z), \quad n \geq 1. \quad (32)$$

It can be directly checked that the addition formulae Eq. (19) and Eq. (28) are as well accomplished by the derivatives, i.e.,

$$R^{(1)}_{n}(z_{1} + z_{2}) = \sum_{m=0}^{\infty} R^{(1)}_{n+m}(z_{1})R^{(1)}_{m}(z_{2}), \quad n \geq 0, j = 1, 2. \quad (33)$$

4. Fast multipole boundary element method

In this section we develop the multipole and local expansions of the Green's function for the Laplace equation in an impedance half-plane and its application to the FM-BEM.

4.1. Multipole expansion, moments definition and moment-to-moment translation

We start by deducing the multipole expansion of integrals of the form Eq. (13). Accordingly, let us define $K(w, z) = K(x, w, y(z))$ with K defined in Eq. (10), and consider Γ_{p} to be a curve in \mathbb{C}. Now, we take $z_{0} \in \mathbb{C}$, such that $|z_{0}| < r$ for all $z \in \Gamma_{p} \subset \Gamma$, with $r > 0$, and we let $w \in \mathbb{C}$ be such that $r < |w - z_{0}| < |w - z|$. Thus, combining Eqs. (30) and (31) we can establish the multipole series expansion

$$\int_{\Gamma} K(w, z) \varphi(z) d\sigma_{z} = \frac{1}{4\pi} \sum_{n=0}^{\infty} \left\{ S^{(1)}(w - z_{0}) - S^{(1)}(w - z) \right\} M^{(1)}_{n}(z_{0})$$

$$+ \frac{1}{4\pi} \sum_{n=0}^{\infty} \left\{ S^{(1)}(w - z_{0}) - S^{(1)}(w - z) \right\} M^{(1)}_{n}(z_{0})$$

$$+ \frac{1}{2\pi i} \sum_{n=0}^{\infty} \left\{ S^{(2)}(w - z_{0}) M^{(2)}_{n}(z_{0}) + S^{(2)}(w - z) M^{(2)}_{n}(z_{0}) \right\}$$

$$- \frac{1}{2} \left\{ e^{-i\pi \sigma_{n}} M^{(2)}_{n}(z_{0}) + e^{-i\pi \sigma_{n}} M^{(2)}_{n}(z_{0}) \right\}. \quad (34)$$

where the multipole moments about the point z_{0} are defined as

$$M^{(i)}_{n}(z_{0}) = \int_{\Gamma} \eta^{(i)}(z - z_{0}) - \varphi(z) R^{(i)}_{n}(z - z_{0}) \varphi(z) d\sigma_{z}, \quad i = 1, 2. \quad (35)$$

$$M^{(i)}_{n}(z_{0}) = \int_{\Gamma} \eta^{(i)}(z - z_{0}) - \varphi(z) R^{(i)}_{n}(z - z_{0}) \varphi(z) d\sigma_{z}, \quad i = 1, 2. \quad (36)$$

Let us observe that when φ is a piecewise constant function on the segments Γ_{p}, the moments can be computed analytically for a wide range of nodal basis functions φ. At this stage it should be added that the multipole expansion Eq. (34) is also valid to evaluate the integrals $f_{i} G(w, z) \varphi(z) d\sigma_{z}$ and $f_{i} F(w, z) \varphi(z) d\sigma_{z}$ when the moments, Eqs. (35) and (36), are computed by replacing $\eta = 0$ and $\varphi = -1$ in the case of the integral involving the kernel G, and replacing $\varphi = 0$ in the case of the integral involving the kernel F.

A key issue for the efficiency of the FM-BEM is to find a way to shift the moments from z_{0} to a new nearby point z_{p}. To do so, we replace z_{0} by z_{p} in Eqs. (35) and (36), and write $z - z_{0} = z_{1} + z_{2}$, with $z_{1} = z - z_{0}$ and $z_{2} = z_{0} - z_{p}$. Therefore, applying the addition formulae Eqs. (19), (28), and (33), we get that the moments about z_{0} can expressed as a linear combination of the moments about z_{p}. More precisely, this procedure yields the formulae

$$M^{(i)}_{n}(z_{p}) = \sum_{m=0}^{n} R^{(i)}_{n}(z_{p} - z_{0}) M^{(i)}_{m}(z_{0}), \quad i = 1, \quad (37)$$

$$M^{(i)}_{n}(z_{p}) = \sum_{m=0}^{n} R^{(i)}_{n}(z_{p} - z_{0}) M^{(i)}_{m}(z_{0}), \quad i = 2, \quad (38)$$

referred to as moment-to-moment (M2M) translations.

4.2. Moment-to-local and local-to-local translations

Let $w_{0} \in \mathbb{C}$ be such that $|w - w_{0}| < r < |w_{0} - z_{0}| < |w_{0} - z|$. We introduce the auxiliary variables $z_{2} = w_{0} - z_{0}, z_{3} = w_{0} - z_{0}$ and $z_{1} = w - w_{0}$. Expressing Eq. (34) using these new variables we get

$$\int_{\Gamma} K(w, z) \varphi(z) d\sigma_{z} = \frac{1}{4\pi} \sum_{n=0}^{\infty} \left\{ S^{(1)}(z_{1} + z_{2}) - S^{(1)}(z_{1} + z_{3}) \right\} M^{(1)}_{n}(z_{0})$$

$$+ \frac{1}{4\pi} \sum_{n=0}^{\infty} \left\{ S^{(1)}(z_{1} + z_{2}) - S^{(1)}(z_{1} + z_{3}) \right\} M^{(1)}_{n}(z_{0})$$

$$+ \frac{1}{2\pi i} \sum_{n=0}^{\infty} \left\{ S^{(2)}(z_{1} + z_{2}) M^{(2)}_{n}(z_{0}) + S^{(2)}(z_{1} + z_{3}) M^{(2)}_{n}(z_{0}) \right\}$$

$$- \frac{1}{2} \left\{ e^{-i\pi \sigma_{n}} M^{(2)}_{n}(z_{0}) + e^{-i\pi \sigma_{n}} M^{(2)}_{n}(z_{0}) \right\}. \quad (34)$$
Subsequently, applying addition formulae Eqs. (20) and (29) to expand the functions $S^{(i)}_m$, $i = 1, 2$, and rewriting the resulting expression as a function of the original variables z_0, w and w_0, we achieve that

$$
\int_{\Gamma} K(w, z) \varphi(z) d\sigma_z = \frac{1}{4\pi} \sum_{m=0}^{\infty} R^{(1)}_{m} (w_0 - w) \left\{ L^{(1)}_{m} (w_0) - L^{(1)}_{m} (w_0) \right\}
+ \frac{1}{4\pi} \sum_{m=0}^{\infty} R^{(2)}_{m} (w_0 - w) \left\{ L^{(2)}_{m} (w_0) - L^{(2)}_{m} (w_0) \right\}
+ \frac{1}{2\pi} \sum_{m=0}^{\infty} R^{(3)}_{m} (w_0 - w) \left\{ L^{(3)}_{m} (w_0) - L^{(3)}_{m} (w_0) \right\},
$$

(39)

where we introduced the local expansions coefficients $L^{(i)}_{m, i}$ and $L^{(i)}_{m, i}$, $i = 1, 2, 3$, respectively defined as

$$
L^{(1)}_{m, i} (w_0) = \sum_{n=0}^{\infty} S^{(1)}_{m, n} (w_0 - z_0) M^{(1)}_{n} (z_0), \quad i = 1,
$$

(40)

$$
L^{(2)}_{m, i} (w_0) = \sum_{n=0}^{\infty} S^{(2)}_{m, n} (w_0 - z_0) M^{(2)}_{n} (z_0), \quad i = 2,
$$

$$
L^{(3)}_{m, i} (w_0) = \sum_{n=0}^{\infty} S^{(3)}_{m, n} (w_0 - z_0) M^{(3)}_{n} (z_0), \quad i = 3.
$$

The series Eq. (39) is referred to as local expansion while formulae Eqs. (40) and (41) are referred to as moment-to-local (M2L) translations. It should be pointed out that Eq. (39) is also valid for expanding integrals that involve C and F kernels.

Finally, from the definitions Eqs. (40) and (41) we obtain a way to transfer M2L expansions from w_0 to a new nearby point w_0. Replacing w_0 by w_0 in Eqs. (40) and (41), and assuming that $|w_0 - w_0| < r < |z_0 - w_0|$, we apply the addition formulae Eqs. (20) and (29) to expand the functions depending on $w_0 - z_0$ in terms of functions depending on $w_0 - z_0$ and $w_0 - w_0$. This process results in

$$
\int_{\Gamma} K(w, z) \varphi(z) d\sigma_z = \frac{1}{4\pi} \sum_{k=m}^{\infty} R^{(1)}_{k, m} (w_0 - w) \left\{ L^{(1)}_{k, m} (w_0) - L^{(1)}_{m} (w_0) \right\},
$$

(42)

$$
\int_{\Gamma} K(w, z) \varphi(z) d\sigma_z = \frac{1}{4\pi} \sum_{k=m}^{\infty} R^{(2)}_{k, m} (w_0 - w) \left\{ L^{(2)}_{k, m} (w_0) - L^{(2)}_{m} (w_0) \right\},
$$

(43)

$$
\int_{\Gamma} K(w, z) \varphi(z) d\sigma_z = \frac{1}{4\pi} \sum_{k=m}^{\infty} R^{(3)}_{k, m} (w_0 - w) \left\{ L^{(3)}_{k, m} (w_0) - L^{(3)}_{m} (w_0) \right\},
$$

referred to as local-to-local (L2L) translations.

4.3. Error bounds for the multipole expansions

Due to obvious computational constraints, the multipole and local expansions have to be truncated at a finite number of terms when they are applied to approximate BEM integrals. Then, error bounds for the truncated series expansions are essential to control the accuracy of the proposed method, particularly for problems having solutions that exhibit a surface-wave behavior with a frequency depending on the Robin parameter ν. Therefore, we characterize here how the truncation error depends on the Robin parameter in order to ensure the accuracy of the method for different surface-wave frequencies.

For the sake of simplicity in the analysis we start by introducing the notation

$$
\int_{\Gamma} K(w, z) \varphi(z) d\sigma_z = \frac{\phi^{in}(w)}{4\pi} + \frac{\phi^{in}(w) + \phi^{in}(w)}{2\pi} + \frac{\phi^{in}(w)}{2i},
$$

where ϕ^{in} contains the integrals involving logarithmic kernels and their derivatives, ϕ^{cos} does the same for the cosine kernel, and $\phi^{cos}(w) = \int_{\Gamma} \left\{ (iy - v_i(z)) e^{-i m \varphi(z)} \sin(v(z - w) - \pi) \right\} \varphi(z) d\sigma_z,

$$
\phi^{cos}(w) = \int_{\Gamma} \left\{ (iy - v_i(z)) e^{-i m \varphi(z)} \sin(v(z - w) + \pi) \right\} \varphi(z) d\sigma_z.
$$

Here it should be pointed out that ϕ^{cos} does not actually entail approximations by a series, so it is not considered in the analysis. On the other hand, error bounds for the approximation of ϕ^{in} can be found in the large amount of literature available on the topic (cf. [17,18,49]), so we focus exclusively on the terms depending on the exponential integral function.

The next proposition states an error bound for the approximation of $\phi^{in}(w)$ by a truncated multipole expansion.

Proposition 4.1. Let $w, z_0 \in C$, such that $|z - z_0| < r$ and $|w - z_0| > rd$ for all $z \in \Gamma, r > 0$ and $d > 1$ (see Fig. 2). Also let $v \in \mathbb{C}$ such that $0 < \arg v < \pi/2$. Then, the error bound

$$
\left| \phi^{in}(w) - \sum_{n=0}^{p} S^{(2)}_{n} (w - z_0) M^{(2)}_{n} (z_0) \right| \lesssim |v|^{p+1} \left| \sum_{n=0}^{p} |v|^{n+1} M^{(2)}_{n} (z_0) \right| \frac{d^2}{d - 1}
$$

holds true for all $p \geqslant 1$, where $S^{(2)}_{n}$ and $M^{(2)}_{n}$ are defined in Eqs. (26) and (35), respectively.

Remark 4.1. The error bound Eq. (44) is also valid for the multipole expansion of $\phi^{in}(w)$.

Proof. We note first that thanks to the multipole expansion Eq. (34), the error is explicitly given by

$$
E = \left| \phi^{in}(w) - \sum_{n=0}^{p} S^{(2)}_{n} (w - z_0) M^{(2)}_{n} (z_0) \right| = \left| \sum_{n=p+1}^{\infty} S^{(2)}_{n} (w - z_0) M^{(2)}_{n} (z_0) \right|.
$$

(45)

Subsequently, taking into account the assumption $|w - z_0| > rd$ and the definition of $S^{(2)}_{n}$ given in Eq. (26), we can easily get the bound

$$
\left| S^{(2)}_{n} (w - z_0) \right| \lesssim \frac{(n - 1)!}{|v|^n (rd)^{n+1}} \left| \sum_{k=0}^{n-1} \frac{v^{(k)}(z_0 - w_0)}{k!} \right| \frac{1}{n + 1}.
$$

(46)

Likewise, from the definition of $R^{(2)}_{n}$ given in Eq. (25), and taking into consideration the assumption $|z - z_0| < r$, we achieve a bound for the moments given by

$$
\left| M^{(2)}_{n} (z_0) \right| = \left| \int_{\Gamma} \left\{ (iy - v_i(z_0)) v^{(n)}(z_0 - w_0) \right\} \varphi(z) d\sigma_z \right| \lesssim \int_{\Gamma} \left| (iy - v_i(z_0)) v^{(n)}(z_0 - w_0) \right| \varphi(z) d\sigma_z \lesssim \left| \varphi \right| L_{(r)} \left| v \right|^{n+1} \left(\frac{n+1}{n+1} + \frac{1}{r} \right),
$$

(47)

Therefore, the terms of the series defining the error Eq. (45) can be bounded as.
Now, noticing that
\[
\sum_{n=p+1}^{\infty} \frac{1}{n!} \frac{(\mid w \mid r)^{n}}{k!} d^{-n} \leq \left(\sum_{n=p+1}^{\infty} \frac{1}{n!} \frac{(\mid w \mid r)^{n}}{k!} \right) \left(\sum_{k=0}^{n-1} \frac{1}{k!} d^{-k} \right),
\]
we find that
\[
E \leq \frac{\mid \varphi \mid_{L_{1}(\Omega)}}{d^{-p}} \frac{\mid \varphi \mid_{L_{1}(\Gamma_{m})} e^{(1-d) \mid w \mid r} (m + p) \mid (d - 1)^{m+1}}{p + 1} d^{-p+2}.
\]
(48)

holds true for all \(p \geq 1 \) and \(m \geq 1 \), where \(S_{n,m}^{(2)} \), \(M_{n,m}^{(2)} \), and \(L_{m}^{(2)} \) are defined in Eqs. (26), (35), and (40), respectively. For the case \(m = 0 \) and \(p \geq 1 \) the corresponding error bound is given by Eq. (44).

Remark 4.2. The error bound Eq. (48) is also valid for \(S_{m,n}^{(2)}(\Omega_{0}) \).

Proof. Due to the definition Eq. (40), we have that the error can be explicitly expressed as
\[
E_{m} = \left| \frac{L_{m}^{(2)}}{L_{m}^{(1)}}(\Omega_{0}) - \sum_{n=0}^{p} S_{n,m}^{(2)}(\Omega_{0} - \mid w \mid z_{0}) M_{n}^{(2)}(z_{0}) \right| = \left| \sum_{n=p+1}^{\infty} S_{n,m}^{(2)}(\Omega_{0} - \mid w \mid z_{0}) M_{n}^{(2)}(z_{0}) \right|.
\]
(49)

Next, considering the bounds Eqs. (46) and (47), we get that
\[
\mid S_{n,m}^{(2)}(\Omega_{0} - \mid w \mid z_{0}) M_{n}^{(2)}(z_{0}) \mid \leq \frac{\mid \varphi \mid_{L_{1}(\Omega)}}{n} \frac{\mid \varphi \mid_{L_{1}(\Gamma_{m})} e^{(1-d) \mid w \mid r} (m + p) \mid (d - 1)^{m+1}}{p + 1} d^{-p+2}.
\]
(50)

Consequently, the error is bounded by the series
\[
E_{m} = \sum_{n=p+1}^{\infty} \left| \frac{L_{m}^{(2)}}{L_{m}^{(1)}}(\Omega_{0} - \mid w \mid z_{0}) M_{n}^{(2)}(z_{0}) \right| = \left| \frac{\mid \varphi \mid_{L_{1}(\Omega)}}{d^{-p}} \frac{\mid \varphi \mid_{L_{1}(\Gamma_{m})} e^{(1-d) \mid w \mid r} (m + p) \mid (d - 1)^{m+1}}{p + 1} d^{-p+2} \right|
\]
(51)

where \(F_{1} \) is the Gauss hypergeometric function (cf. [45]). Then, from [52, Theorem 1.10] we get the inequality
\[
\frac{m! \mid (m + p + 1)! \mid (d - 1)^{m+1}}{2^{m} + 1} \frac{F_{1}(m + p + 1, 1; p + 1; q)}{1 - q} < 1,
\]
(52)

which is valid for all \(m \geq 1 \). From here we find that the error bound
\[
E_{m} \leq \left| \frac{\mid \varphi \mid_{L_{1}(\Omega)}}{\mid w \mid r} \frac{\mid \varphi \mid_{L_{1}(\Gamma_{m})} e^{(1-d) \mid w \mid r} (m + p) \mid (d - 1)^{m+1}}{p + 1} d^{-p+2} \right|
\]
is valid for all \(m \geq 1 \). Finally, for the case \(m = 0 \) the error bound follows directly from the fact that \(\phi_{0}^{(2)}(\Omega) = L_{0}^{(2)}(\Omega_{0}) \) and the proof of Proposition 4.1. □

The next proposition establishes an error bound for the local expansion coefficients of \(\phi^{(2)}(\Omega) \).

Proposition 4.3. Let the points \(w, w_{0} \) and \(z_{0} \) in \(\mathbb{C} \), be such that \(\mid w - w_{0} \mid < r, \mid z - z_{0} \mid < r \) and \(\mid w_{0} - z_{0} \mid > r(d + 1) \) for all \(z \in \Gamma_{r} \), where \(r > 0 \) and \(d > 1 \) (Fig. 2). Also let \(v \in \mathbb{C} \) such that \(0 \leq \arg v \leq \pi/2 \). Then, the error bound
\[
\left| \frac{\mid \varphi \mid_{L_{1}(\Omega)}}{\mid w \mid r} \frac{\mid \varphi \mid_{L_{1}(\Gamma_{m})} e^{(1-d) \mid w \mid r} (m + p) \mid (d - 1)^{m+1}}{p + 1} d^{-p+2} \right|
\]
(52)

is valid for all \(m \geq 1 \).
holds true for all \(p \geq 1 \), where \(R_m^{(2)} \) and \(L_m^{(2)} \) are defined in Eqs. (25) and (40), respectively.

Remark 4.3. The error bound Eq. (52) is also valid for \(\phi^{(r)}(w) \).

Proof. First we observe that thanks to the local expansion Eq. (39), the error can be explicitly expressed as

\[
E = |\phi|(|w|) - \sum_{m=0}^{p} R_m^{(2)}(|w_0 - w|) L_m^{(2)}(|w_0|) \\
= \sum_{m=p+1}^{\infty} R_m^{(2)}(|w_0 - w|) L_m^{(2)}(|w_0|).
\]

In order to find bounds for the terms in the series defining the error, we compare the addition formula for the functions \(S_m^{(2)} \) given in Eq. (29), the definition of the moments Eq. (35), and the M2L formula Eq. (40), to realize that

\[
L_m^{(2)}(|w_0|) = -\int_{w_i} \left\{ \eta S_m^{(2)}(w_0 - z) + v(z) S_m^{(2)}(w_0 - z) \right\} \phi(z) \, d\sigma_z.
\]

Now, from the definition of \(S_m^{(2)} \) in can be inferred that

\[
S_m^{(2)}(z) = -iv \left\{ S_m^{(2)}(z) + S_m^{(2)}(-z) \right\}, \quad m \geq 1.
\]

Therefore, by means of the bound for \(S_m^{(2)} \) given in Eq. (46), we achieve that

\[
|S_m^{(2)}(w_0 - z)| \leq \frac{m|e|}{|v|} \left\{ \frac{|v|}{m + 1} \right\}^d
\]

because due to the triangular inequality we have that \(|w_0 - z| > rd\) under the assumptions that \(|w_0 - z_0| > rd + 1\) and \(|z - z_0| < r\).

Accordingly, we get the bound

\[
L_m^{(2)}(|w_0|) \leq ||\varphi||_{L^1(\Gamma)} \left\{ \frac{m|e|}{|v|} \right\} \left(\frac{1}{rd} + \frac{|v|}{m} \right),
\]

which, together with

\[
R_m^{(2)}(|w_0 - w|) \leq \frac{|v|^p |e|^q}{m!}
\]

leads to

\[
R_m^{(2)}(|w_0 - w|) L_m^{(2)}(|w_0|) \leq ||\varphi||_{L^1(\Gamma)} \left(\frac{e^{d(p+1)}}{d!} \right) \left(\frac{1}{rd} + \frac{|v|}{m} \right).
\]

Finally, taking into consideration that \(m^{-1} \leq (p+1)^{-1} \) when \(m \geq p + 1 \), we get the bound

\[
E \leq ||\varphi||_{L^1(\Gamma)} \left(\frac{1}{rd} + \frac{|v|}{p+1} \right) \left(\frac{e^{d(p+1)}}{d!} \right) d^{-p}.
\]

4.4. FM-BEM algorithm

In this subsection we give the details of the FM-BEM algorithm, which thanks to the previously obtained multipole and local expansions, corresponds, in general terms, to the classic adaptive algorithm for potential problems (cf. [21,38,53]).

For a given problem’s domain \(\Omega_p \), we discretize the perturbed part of its boundary \(\Gamma_p \) in the same way as in the conventional BEM approach, that is, assuming it given by \(\Gamma_p = \bigcup_{i=1}^{N_p} \Gamma_i \), where each \(\Gamma_i \) is a straight line segment. Subsequently we construct a square placed on \(\mathbb{R}^2 \) containing all the \(N \) boundary segments composing \(\Gamma_p \), which is the 0 level cell. Then, an adaptive data structure is built recursively by dividing the 0 level cell into four child cells of level 1. If the cell under consideration contains no segments, i.e., no middle point of a segment is contained in the cell, it is immediately forgotten. If the cell contains fewer than \(s \) segments—where \(s \) is an appropriately chosen positive integer—it is not subdivided further and is considered a leaf cell. Otherwise, it is regarded as a parent cell and is subdivided into four child cells. This procedure is then repeated for each one of the following cells.

Let us now introduce some important definitions. Two cells at the same level \(l \) are said to be adjacent cells at level \(l \) if they have at least one common vertex. Two cells are said to be well separated at level \(l \) if they are not adjacent at level \(l \) but their parent cells are adjacent at level \(l - 1 \). The list of all well-separated cells from a level \(l \) cell \(c \) is called the interaction list of \(c \). Cells at the same level of \(c \), are called to be far cells of \(c \) if their parent cells are not adjacent to the parent cell of \(c \). Finally, we generalize the notion of the adjacency for leaf cells at different levels. Accordingly, two leaf cells \(c_1 \) and \(c_2 \) at levels \(l_1 \) and \(l_2 \) (\(l_1 < l_2 \)) respectively, are adjacent, if the level \(l_1 \) cell to which \(c_2 \) belongs is adjacent to \(c_1 \) at level \(l_1 \).

The algorithm for the matrix–vector multiplication between \(K \) and a complex vector \(v \in \mathbb{C}^m \) is then carried out through the following steps:

1. **Upward pass.** Multipole moments are calculated for each cell at all levels \(l \geq 2 \) for \(n = 0, \ldots, p \). Starting from the biggest level, the moments are computed first for each leaf cell \(c \) applying directly Eqs. (35) and (36), taking \(z_0 \) equal to the center of \(c \); considering \(\phi(z) = \sum_i \phi_i(z) \) where the sum is taken over all the basis functions \(\phi_i \) having support on \(\Gamma_i \); and adding the contributions of all the segments \(\Gamma_i \) contained in \(c \). For a parent cell, the moments are computed by shifting the moments of its child cells to the parent cell center \(z_0 \) by using M2M translation formulae Eqs. (37) and (38). Adding the contributions of all its child cells we achieve the moments of \(c \). We continue the M2M translations upward until the level 2 is reached.

2. **Downward pass.** Local expansion coefficients for \(m = 0, \ldots, p \) are computed on all cells starting from level 2 and tracing the tree structure downward. The local coefficients associated with a cell \(c \) is the sum of the contributions of cells in its interaction list and cells far from \(c \). The contributions of cells in the interaction list are calculated through the M2L translation formulae Eqs. (40) and (41), taking \(w_0 \) as the center of \(c \) and considering the moments of all the cells in the interaction list. The contributions of far cells are calculated by using L2L translations formulae equations (42) and (43), with the local coefficients at the expansion point \(w_0 \) of the center of the parent cell of \(c \), being shifted to \(w_0 \), the center of \(c \). For a cell \(c \) at level 2, we use only the M2L translation formulae to compute the coefficients of the local expansion.

3. **Evaluation of the matrix–vector product.** For a collocation point \(w_i \) in a leaf cell \(c \), we evaluate the associated \(i \)th coordinate of \(Kr \) as the sum of two parts. The contributions from segments in the leaf \(c \) and its adjacent cells, are evaluated directly in the way of the conventional BEM. The contributions from all other segments are obtained from the local expansion Eq. (39) achieved by taking \(w = w_i \) and using the local coefficients of \(c \) computed in the downward pass. The remaining coordinates are computed in exactly the same way.

Let us observe that no interactions between well separated cells are computed by using multipole expansions. Therefore, we are allowed to choose \(d = 2 \) in Propositions 4.1–4.3 (cf. [18,49,53]) and consequently all the expansions upon which the algorithm is based are valid as well as error bounds Eqs. (44), (48), and (52). Furthermore, it can be inferred from here that given a Robin parameter, a discretization of the perturbed boundary, and a quad–tree structure, the truncation error is bounded by \(C 2^{-p} \). Therefore, like the classical FMM algorithm for particle simulations, in order to obtain a relative precision \(\varepsilon \) \(p \) would have to be chosen of order \(\log_2(\varepsilon) \).
As in the classical adaptive FM-BEM for potential problems in the plane (cf. [53,38]), it can be estimated that the resulting algorithm for a matrix–vector product exhibits an asymptotic computational complexity of $O(N)$. Accordingly, the solution of the linear system Eq. (12) through an iterative algorithm would present the same computational complexity if a moderate number of iterations ($\propto N$) are required to achieve an approximate solution within a prescribed tolerance.

5. Numerical examples

In this section we present some examples to demonstrate the efficiency and accuracy of the FM-BEM for solving potential problems defined in locally perturbed half-planes with a Robin boundary condition. The algorithm was implemented in Fortran 95 and the codes have been tested in a laptop PC with an Intel 2.4 GHz CPU and 2 GB RAM. In all the examples we use constant basis functions and collocation points placed at the middle of each boundary segment. The iterative method for solving the linear algebraic system is the version of the GMRES presented in [53] which is based on the reverse communication mechanism for the matrix–vector product. The exponential integral function is numerically evaluated by using the subroutines of Amos [55] and Morris [56], whereas the functions $S^{(2)}_n$ are computed through the recurrence relation Eq. (22), which has been proved to be stable [50].

5.1. Benchmark problem

First of all, to validate the proposed FM-BEM method, we consider as benchmark problem a domain Ω_e taken as the exterior of a half-circle of radius $R = 1$ centered at the origin. The perturbed boundary C_p is then given by the upper half-circle, and the Robin parameter ν_s is chosen constant throughout C_p. As boundary data we take

$$f(x) = -\frac{\partial G(x,z)}{\partial n_x} + \nu_s G(x,z),$$

with the source point $z = (0,0)$. In this case the exact solution of Eq. (1) is given by

$$u(x) = -G(x,z).$$

As the exact solution of the problem is known, we can test the accuracy of the proposed method by comparing the exact solution with the approximate solution through a relative error defined as

<table>
<thead>
<tr>
<th>Mesh refinement h (log scale)</th>
<th>Relative error E_r (log scale)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-3}</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>10^{-5}</td>
</tr>
<tr>
<td>10^{-1}</td>
<td>10^{-6}</td>
</tr>
</tbody>
</table>

Fig. 3. Relative error E_r produced by the FM-BEM and the BEM to solve the benchmark problem.

<table>
<thead>
<tr>
<th>Number of boundary segments N</th>
<th>CPU time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>200</td>
</tr>
<tr>
<td>4000</td>
<td>400</td>
</tr>
<tr>
<td>6000</td>
<td>600</td>
</tr>
<tr>
<td>8000</td>
<td>800</td>
</tr>
</tbody>
</table>

Fig. 4. CPU time required by the FM-BEM and the BEM to solve the benchmark problem.
Figs. 3 and 4 compare the FM-BEM and the conventional BEM using the LU decomposition and the GMRES algorithm for the solution of the linear system stemming from the discretization of the boundary integral equation of the benchmark problem. The results of the FM-BEM were obtained by taking $p = 15$ and $s = 20$. Convergence was reached after 8 GMRES iterations using an error tolerance of 1×10^{-10}. Fig. 3(a), (b) compare the error E_h for a real and a complex Robin parameter for different mesh sizes h. As can be observed in the results, no accuracy differences can be appreciated between the considered methods. On the other hand, Fig. 4(a), (b) demonstrate the efficiency of the proposed method by comparing the CPU time taken by the FM-BEM and the conventional BEM to solve the benchmark problem for a real and a complex Robin parameter.

5.2. A scattering problem

From the linear theory of water-waves (cf. [2]) we know that a one-dimensional plane surface-wave of the form $u_I(x) = e^{i(x_1 + x_2)}$ is allowed to propagate undisturbed along the flat boundary of an unperurbed half-plane with a Robin parameter ν. Thus, when a compact perturbation of the half-plane is taken into account, the solution of the differential problem Eq. (1) with boundary data

$$
E_h = \frac{\|u_h - u\|_{L^2(T_p)}}{|u|_{L^2(T_p)}}.
$$

![Plot of $|u_I|$ for four different values of the Robin parameter in a mesh with up to 1e5 nodes.](image-url)
\[f(x) = -\frac{\partial u_I(x)}{\partial n} + v(x)u(x), \quad x \in I \]

represents the scattered field due to obstacles or variations of \(v \) encountered by the surface incident wave \(u_I \).

As an example we consider the scattering by an array of 121 equally spaced cylinders placed in the half-plane, as is shown in Fig. 5. The boundary mesh accounts for up to 100000 nodes. The resulting integral Eq. (9) was solved using the FM-BEM for four different values of the Robin parameter. Fig. 5 depicts the absolute value of the total field \(u_I + u \) for each case. This example clearly demonstrates the efficiency of the FM-BEM for solving large scale problems, despite the large number of GMRES iterations needed to get the desired accuracy in some cases.

It has to be pointed out that the method becomes prohibitively expensive for some values of the Robin parameter \(v \). Two different factors explain this drawback. On one hand, it is observed that for a fixed number of terms of the multipole expansions the truncation error grows with \(v \). This phenomenon is captured by the error bounds obtained in Section 4.3 and is related with the appearance high-frequency oscillations of the solution in the neighborhood of the boundary. On the other hand, we notice that the problem may become very ill-conditioned for a countable set of values of the impedance parameter \(v \) associated with the Steklov eigenvalues of the problem, which seems to be the phenomenon observed in this example. This drawback can be partially suppressed by introducing a suitable preconditioner (cf. [25]) or by modifying the boundary integral equation.

Acknowledgement

Pedro Ramaciotti was supported by the program MECÉ Educación Superior (2) PUC0710.

References

[34] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Grapths and Mathematical Tables, Oxford University Press, 1972.